Rhind Mathematical
Papyrus (2 of 8) / © 1979 - 2002 by Franz Gnaedinger, Zurich, fg(a)seshat.ch,
fgn(a)bluemail.ch / www.seshat.ch
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8
Multiplying unit fraction series
How much is 184 times 2 '6 '7 times 5 '3 '5 ?
  184 times 2 '6 '7  equals  
368   31   26 
=   425
  425 times 5 '3 '5  equals 
2125  142   85 
=  2352 *
  184 times 5 '3 '5  equals  
920   61   37 
=  1018
 1018 times 2 '6 '7  equals 
2036  170  145 
=  2351 *
  average result  2351 '2 
(mistake less than '10)
How much is 317 times 3 '3 '11 times 4 '5 '13?
  317 times 3 '3 '11  equals  
951  106   29 
=  1086
 1086 times 4 '5 '13  equals 
4344  217   84 
=  4645
  317 times 4 '5 '13  equals 
1268   63   24 
=  1355
 1355 times 3 '3 '11  equals 
4065  452  123 
=  4640
  average result  4642 '2  (mistake less than '30)
How much is 5 '3 '7 '11 by 5 '3 '7 '11? This time we multiply the
product by a factor of 100 and then divide the result by 100 again:
  100 times 5 '3 '7 '11  equals  
500   33  14  
9  =   556
  556 times 5 '3 '7 '11  equals 
2780  185  79 
51  =  3095
  3095 / 100 = practically 31  (mistake less than '135)
A calculation of interest
Vizier Milo (a former incarnation of Milo Gardner, whom I shall
mention later :-) saved 68,954 Egyptian Dollars and brings the money to the First
City Bank of Amarna, which offers interest at '101 '202 '303 '606 (2/101, a
little more than 2 percent). How will Milo's fortune rise in the coming years?
Year
1   fortune  68,954  
interest  683 341 228 114  = 
1,366
year
2   fortune  70,320  
interest  696 348 232 116  = 
1,392
year
3   fortune  71,712  
interest  710 355 237 118  = 
1'420
year
4   fortune  73,132  
interest  724 362 241 121  = 
1,448
year
5   fortune  74,580  
interest  738 369 246 123  = 
1,476
year
6   fortune  76,056  
interest  753 377 251 126  = 
1,507 
year
7   fortune  77,563  
interest  768 384 256 128  = 
1,536 
year
8   fortune  79,099  
interest  783 392 261 131  = 
1,567 
year
9   fortune  80,666  
interest  799 399 266 133  = 
1,597 
year
10  fortune  82,263  
interest  814 407 271 136  = 
1,628
year
11  fortune  83,891  
interest  831 415 277 138  = 
1,661
year
12  fortune  85,552  
interest  847 424 282 141  = 
1,694
year
13  fortune  87,246  
interest  864 432 288 144  = 
1,728
year
14  fortune  88,974  
interest  881 440 294 147  = 
1,762
YEAR
15  FORTUNE  90,736 DOLLARS   
And the exact value?
68954 x (1 + 2/101) exp 14 = 68954 x 1.3158971... = 90736.365...
Although we have rounded all numbers, the margin of error is not even
40 cents. And if we begin with 6,895,400 cents instead of 68,954 dollars, the
mistake would be less than 4 (four) cents.
Playing with beans
     o o o      
o o o o    
    o o o o     
o o o o     o o o o o o
   o o o o o    
o o o o     o o o o o o     oooooooooooo
   3 + 4 + 5 
=   3 x 4   =    
2 x 6     =     1 x 12
   oooooooooooo      12        
or    1
   oooooo oooooo      6+6      
or    1/2 + 1/2
   oooooo oo oooo     6+2+4    
or    1/2 + 1/6 + 1/3
   oooooo oo o ooo    6+2+1+3  
or    1/2 + 1/6 + 1/12 + 1/4
1/1 = '1   1/2 = '2   1/3 = '3  
1/4 = '4   1/6 = '6   1/12 = '12
    1 = '1                 1 = '1
    1 = '2 '2              1 = '1x2 '2
    1 = '2 '6 '3           1 = '1x2 '2x3 '3
    1 = '2 '6 '12 '4       1 = '1x2 '2x3 '3x4 '4
RHIND MATHEMATICAL PAPYRUS,
duplations and conversions
The famous Rhind Mathematical Papyrus was written around 1650 BC,
and represents a copy of a lost scroll dated around 1850 BC. At the begin of
the RMP are found divisions of 2 by the odd numbers from 5 up to 101. Examples:
  "5 = '3 '15       (2/5 = 1/3 + 1/15)
  "7 = '4 '28       (2/7 = 1/4 + 1/28)
  "9 = '6 '18       (2/9 = 1/6 + 1/18)
 "11 = '6 '66
 "13 = '8 '52 '104
 "19 = '12 '76 '114
 "35 = '30 '42 
 "43 = '42 '86 '129 '301
 "67 = '40 '268 '670
 "91 = '70 '130
 "95 = '60 '380 '570
 "99 = '66 '198
"101
= '101 '202 '303 '606
The calculations are carried out as follows. If you wish to divide
2 by any number a, note the numbers 1 and a. Divide them by handy numbers until
you get a number b that is smaller than 2. Now subtract number b from 2 and
complete your series. Examples:
  1        
9  (number a)
 
'3        3
 
'6        1 '2  (number b)
  2
minus 1'2 equals '2
 
'18       '2
 
"9 = '6 '18  (since 1'2 '2 equals 2)
 
1         19 
 
'3         6 '3       (divided by 3)
 
'6         3 '6       (divided by 2)
 
'12        1 '2 '12   (divided by 2)
  2
minus 1'2'12 equals ??
 24
minus 12+6+1 equals 5 or 3 + 2   
(multiplied by 12)
  2
minus 1'2'12 equals      '4  '6  
(divided by 12)
 
'76        '4
 
'114       '6
 
"19 = '12 '76 '114  (since 1'2'12 '4 '6 equals 2)
 
1          35
  '5         
7
  '15        
2 '3
  '30        
1 '6
  2 minus 1'6 equals '2 '3
   35 divided by 2+3 equals 7 / remainder '2x3x7
equals '42
  "35 = '30 '42
  
1        43
 
'2        21 '2   (divided by 2)
 
'6         7 '6   (divided by 3)
 
'42        1 '42  (divided by 7)
  2
minus 1'42 equals '2 '3 '7
 
'86        '2
 
'129       '3
 
'301       '7
 
"43 = '42 '86 '129 '301 
(since 1'42 '2 '3 '7 equals 2)
 
1         91
  '7        13
  '14       
6 '2
  '70       
1 '5
'10
  2 minus 1'5'10 equals '2 '5
   91
divided by 2+5 equals 13 / remainder '2x5x13
or '130 
 
"91 = '70 '130
 
1        93
 
'31       3
  '62       1'2
  2
minus 1'2 equals '2
 
'186      '2
 
"93 = '62 '186  (since 1'2 '2
equals 2)
 
1        101
 
'101       1
  2
minus 1 equals '2 '3 '6
 
'202   '2      '303  
'3      '606   '6
"101 = '101 '202 '303 '606 (since 1 '2 '3 '6 equals 2)
Down under algebra
Beginners may carry out all divisions from 2/5 to 2/101 and in so
doing learn how to work with unit fraction series. Advanced learners may go a
step further and look out for number patterns providing the same conversions:
   1  =  '2
'1x2  = 
'2 '2
  '2 
=  '3 '2x3  =  '3
'6
  '3 
=  '4 '3x4  =  '4
'12
  '4 
=  '5 '4x5  =  '5
'20
  '5 
=  '6 '5x6  =  '6
'30
  '6 
=  '7 '6x7  =  '7
'42
  '7 
=  '8 '7x8  =  '8
'56      general form: 'a = 'a+1 'aa+a
   1 
=  '2 '2  -------- 
"1 = '1 '1
  '2 
=  '3 '6
  '3 
=  '4 '12  ------- 
"3 = '2 '6
  '4 
=  '5 '20
  '5 
=  '6 '30  ------- 
"5 = '3 '15 (RMP)
  '6 
=  '7 '42 
  '7 
=  '8 '56  ------- 
"7 = '4 '28
  '8 
=  '9 '72
  '9 
=  '10 '90  ------ 
"9 = '5 '45 (RMP)
 '10 
=  '11 '110
 '11  =  '12
'132  ----  "11 = '6 '66 (RMP)
 ...............................................
The first number pattern generates a pair of remarkable series:
  1 = '2 '2
         '2 = '6 '3
                 '3 = '12 '4
                          '4 = '20 '5
                                   '5 = '30 '6
                                            '6
= '42  ...
  1 = '2     
'6      '12      '20     
'30      '42  ...
  1 = '1x2   
'2x3    '3x4     '4x5    
'5x6     '6x7 ...
  1 = '1
  1 = '1x2 '2
  1 = '1x2 '2x3 '3
  1 = '1x2 '2x3 '3x4 '4
  1 = '1x2 '2x3 '3x4 '4x5 '5
  1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6
  1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6x7 '7
  ........................................
  1 =
'2 '2
        
'2 = '3 '6
                 '6 = '7 '42
                         '42 = '43 1806
  1 =
'1
  1 =
'2 '2
  1 =
'2 '3 '6
  1 =
'2 '3 '7 '42
  1 =
'2 '3 '7 '43 '1806
  1 =
'2 '3 '7 '43 '1807 '3263443 ...
The equation "3 = '2 '6 can be used for many simple
conversions:
  "9 equals '6  '18  
(RMP)
 "15 equals '10 '30   (RMP)
 "21 equals '14 '42   (RMP)
 ..........................
 "87 equals '58 '174  (RMP)
 "93 equals '62 '186  (RMP)
 "99 equals '66 '198  (RMP)
The principle of the first number pattern may be expanded as
follows:
  1 = '2 '2  
= '3 '3 '3    = '4 '4 '4 '4     ...
 '2 = '3 '6  
= '4 '8 '8    = '5 '10 '10
'10  ...
 '3 = '4 '12 
= '5 '15 '15  = '6 '18 '18
'18  ...
 '4 = '5 '20 
= '6 '24 '24  = '7 '28 '28
'28  ...
 '5 = '6 '30  = '7 '35
'35  = '8 '40 '40 '40  ...
 ................................................
Modifying the third column:
  1 
=  '4  '4  
'2  -----------  "1 = '2 '2 '1
 '2 
=  '5  '10  '5
 '3 
=  '6  '18  '9
 '4 
=  '7  '28 
'14
 '5 
=  '8  '40 
'20  ----------  "5 = '4 '20 '10
 '6 
=  '9  '54 
'27
 '7 
=  '10 '70  '35
 '8 
=  '11 '88  '44
 '9 
=  '12 '108 '54  ---------- 
"9 = '6 '54 '27
'10  =  '13
'130 '65
'11  =  '14
'154 '77
'12  =  '15
'180 '90
'13  =  '16
'208 '104  --------  "13 = '8 '104 '52 (RMP)
A more demanding general pattern:
  "1 
equals  '1  plus 
'1x1 of 1     (2/1 = 1/1 + 1/1x1)
  "3 
equals  '3  plus 
'3x3 of 3     (2/3 = 1/3 +
3/3x3)  3=2+1
              '2  plus 
'3x2 of 1     (2/3 = 1/2 + 1/2x3)
  "5 
equals  '5  plus 
'5x5 of 5     (2/5 = 1/5 +
5/5x5)  5=3+2
              '4  plus 
'5x4 of 3     (2/5 = 1/4 +
3/4x5)  3=2+1
              '3  plus 
'5x3 of 1     (2/3 = 1/3 + 1/3x5)
  "7 
equals  '7  plus 
'7x7 of 7     (2/7 = 1/7 +
7/7x7)  7=4+3
              '6  plus 
'7x6 of 5     (2/7 = 1/6 +
5/6x7)  5=3+2
              '5  plus 
'7x5 of 3     (2/7 = 1/5 +
3/5x7)  3=2+1
              '4  plus 
'7x4 of 1     (2/7 = 1/4 + 1/4x7)
 
"9  equals  '9  plus 
'9x9 of 9
              '8  plus 
'9x8 of 7
              '7  plus 
'9x7 of 5
              '6  plus 
'9x6 of 3
              '5  plus 
'9x5 of 1
  ........................................................
All these and many more number patterns are contained in Milo
Gardner's formulas:
       2/p - 1/a = (2a - p) / pa
       n/p - 1/a = (na - p) / pa
It was Milo Gardner who stimulated my interest in unit fractions,
back in Spring 1997. I thank him again for his many patient e-mails.
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8