Rhind Mathematical
Papyrus (6 of 8) / © 1979-2001 by Franz Gnaedinger, Zurich, fg(a)seshat.ch,
fgn(a)bluemail.ch / www.seshat.ch
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8
RMP 46 and 47
Two square containers measure
    10 by 10 
by  3 '3  royal cubits
    10 by 10 
by  5     royal cubits
I am assuming that the floor of each container measures 10 by 10
royal cubits. Now let me inscribe an octagon in that square:
          A   
a      b   B
          h               c
          g               d
          D   
f      e   C
  Square ABCD  
AB = BC = CD = DA = 10 royal cubits
  inscribed octagon abcdefgh   ab=bc=cd=de=ef=fg=gh=ha
A side of the square measures 10 royal cubits or 70 palms or 280
fingers. How long is the side of the regular octagon within the frame of the
square?
  1      
1       2
     
2       3       4
          5       7     
10
             12      17     
24
                 29      41     
58
                     70      99    
140
                        169      ...    
...
  side of octagon    side of circumscribed square
         7             5 
+   7  +  
5   =   12
        10             7 
+  10  +  
7   =   24
        17            12 
+  17  + 
12   =   41
        24            17 
+  12  + 
17   =   58
        41            29 
+  41  + 
29   =   99
        58     
      41  + 
58  +  41   =  140
By doubling the numbers of the last line we find:
  side of octagon  116   
side of square  82+116+82 = 280
The side of the square measures 10 royal cubits or 70 palms or 280
fingers, hence the side of the inscribed octagon   measures practically 116 fingers or 4 cubits
1 palm.
Now let me go a step further and transform the square containers
into granaries of the same volume but in the shape of prisms. The floor of
these containers is given by the above octagon. The area of an octagon is
smaller than that of the square. Accordingly, the granaries will be taller. How
do we calculate their heights? Again by means of the above number pattern:
  height of granary based on square    10 
24  58  140 
...
  height of granary based on octagon   12 
29  70  169 
...
The former square containers were 3 '3 and 5 royal cubits tall.
The new granaries on the base of the octagon are taller. By using the first
numbers 10 and 12 we find the heights:
  3 '3 royal cubits x '10 x 12  =  4 royal
cubits
  5 royal cubits    x '10 x 12 
=  6 royal cubits
Very simple numbers. - Now let us consider only the second
granary. Wishing to get a more accurate volume I use the numbers 140 and 169:
  former height 
5 royal cubits or 140 fingers
  new height 
140f x '140 x 169 = 169f = 6 cubits 1 finger
Calculating the area of the inner wall (right parallelepiped and
prism):
  base 
10 c x 10 c     height  5 royal cubits
  periphery 
4 x 10 c  =  40 royal cubits
  area of wall 
40 c x 5 c  =  200 square cubits
  side of octagon  116 fingers or 4 cubits 1 palm
  height 
169 fingers or 6 cubits 1 finger
  periphery 
8 x 116 fingers = 928 fingers or 33 cubits 1 palm
  area of wall 
=  33 '7 c x 6 '28 c  =  200
'28 '196 cc
The walls of the two granaries have practically the same area.
Even better: they have exactly the same area (the minor error in the above
result is due to the margins of error in the values '41 of 58 and '140 of 169
used for the calculation of the octagon).
Imagine a pair of ideal granaries with vertical walls. One granary
is based on a square. The other granary is based on the regular octagon
inscribed in the square. If the granaries have the same capacity, their walls
have the same area. Or if the inner walls have the same area, the two granaries
have the same volume.
RMP 48
Problem no. 48 of the Rhind Mathematical Papyrus contains a famous
drawing of a square with an inscribed octagon:
          A a b B
          h    
c
          g    
d
          D f e C
  Square ABCD 
irregular octagon abcdefgh
  A-B = B-C = C-D = D-A = 9 royal cubits
  A-a = a-b = b-B = B-c = ... = g-h = h-A = 3
royal cubits
  grid 
3+3+3 by 3+3+3 royal cubits
  area square 
9x9 = 81 square cubits
  area octagon 
9x9 - 2x3x3 = 63 square cubits
A circle inscribed in the square would have about the same area as
the octagon. This generates the value 3 '9 for re:
  '4 x 9 rc x 9 rc x 3 '9  =  63
square cubits
63 square cubits are about 8 by 8 royal cubits. From this we
derive a well known formula: if the diameter of a circle measures 9 units and
if the side of a square measures 8 units the circle and the square have roughly
the same area. This formula generates the value '81 of 256 for re, or nearly '6
of 19 or 3 '6, according to a crosswise multiplication:
   256 x 6 = 1536    81 x 19 = 1539
So we found the values 3 '9 and 3 '6. The equally simple values in
between are 3 '8 and 3 '7 
RMP 49
A rectangle measures 2 by 10 khet or 200 by 1,000 royal cubits
while its area measures 200,000 square cubits. Can you transform the rectangle
into a regular octagon of about the same area?
  circumscribed square  492 by 492 royal cubits  
  partition 
12 times 12+17+12 royal cubits
  grid 
144+204+144 by 144+204+144 royal cubits
  side of octagon  204 royal cubits
  area 
200,592 square cubits
RMP 50
Ahmes calculates the area of a circle whose diameter measures 9
khet = 900 royal cubits. By using his well known formula he obtains 8 by 8 khet
= 64 square khet = 64 aroures or setat = 640,000 square cubits. 
Advanced learners may try to solve a more demanding task:
transforming the circle into a regular octagon of the same area using the
following extended number pattern:
  1      
1       2       2
      2      
3       4      
6
          5       7     
10      14
             12      17     
24      34
                 29      41     
58      82
                     70      99    
140     198
                        169     239    
338     478
The squared side of a regular octagon and the area of the same
octagon maintain a relation that can be approximated by means of the above
numbers:
  side x side  
12  17   29  
41   70   99 
...  square cubits
  area octagon 
58  82  140 
198  338  478 
...  square cubits
The number re may be chosen from the following sequence:
  3 
(plus 22)  25  47 
69  91  113 
135  157  179 
201  223
  1 
(plus  7)   8 
15  22  29  
36   43   50  
57   64   71
  245 
267  289  311 
333  355  377 
399
   78  
85   92   99 
106  113  120  127
Two values contain the number 99: '99 of 478 and '99 of 311. Now
the area of a regular octagon and the one of a circle may be defined like this:
  side x side x '99 x 478    radius x radius x '99 x 311
The octagon and the circle have the same area, therefore:
  side x side x '99 x 478  = 
radius x radius x '99 x 311
The diameter of the circle measures 9 khet or 900 royal cubits
while the radius measures 450 royal cubits. Now we obtain:
  side x side 
=  450 cubits x 450 cubits x 311 x
'478
  side x side 
=  practically 131,752 square
cubits
By consulting a table of square numbers you will find
  362 x 362 
=  131,044  ---      
708 less than 131,752
  363 x 363 
=  131,769  --- 
only  17 more than 131,752
  364 x 364 
=  132,496  ---      
744 more than 131,752
The number 363 is a good solution to our problem. Hence a circle
of the diameter 9 khet and a regular octagon of the side length 363 royal
cubits have practically the same area.
  grid 
770+1089+770 by 770+1089+770  '3
royal cubits
RMP 51
Ahmes calculates the area of a triangle whose base measures 4 khet
and its height 10 khet, generating an area of 20 square khet = 20 aroures =
200,000 square cubits. This area can be transformed into a regular octagon (see
RMP 49):
  grid 
144+204+144 by 144+204+144 royal cubits
  side 
204 royal cubits   area  200,592 square cubits
The drawing of RMP 51 shows a triangle a base measuring 4 khet,
while its height measurement is given as 13 khet. In this case the area
measures 260,000 square cubits, while the regular octagon of roughly the same
area has the following measurements:
  grid 
164+232+164 by 164+232+164 royal cubits
  side 
232 royal cubits   area  259,808 square cubits
RMP 52
This problem concerns a trapezoid whose base measures 6 khet, its
upper side 4 khet and its height 20 khet. Its area is 100 aroures or 1,000,000
square cubits. Transform that area into a regular octagon by using an
alternative number pattern:
  2      
1       4
      3      
5       6
          8     
11      16
             19      27     
38
                 46      65     
92
                322     455    
644
  grid 
322+455+322 by 322+455+322 royal cubits
  side octagon 
455 royal cubits   area  1,000,433 sc
Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8